

Routing and Switching Essentials

Presentation_ID

© 2008 Cisco Systems, Inc. All rights reserved

Chapter 10

- 10.0 Introduction
- 10.1 Dynamic Host Configuration Protocol v4
- 10.2 Dynamic Host Configuration Protocol v6
- 10.3 Summary

Chapter 10: Objectives

- Describe the operation of DHCPv4 in a small-to-medium sized business network.
- Configure a router as a DHCPv4 server.
- Configure a router as a DHCPv4 client.
- Troubleshoot a DHCP configuration for IPv4 in a switched network.
- Explain the operation of DHCPv6.
- Configure a stateless DHCPv6 for a small to medium-sized business.
- Configure a stateful DHCPv6 for a small to medium-sized business.
- Troubleshoot a DHCP configuration for IPv6 in a switched network.

Introduction Introduction

 Dynamic Host Configuration Protocol (DHCP) is a network protocol that provides automatic IP addressing and other information to clients:IP address

Subnet mask (IPv4) or prefix length (IPv6)

Default gateway address

DNS server address

- Available for both IPv4and IPv6
- This chapter explores the functionality, configuration, and troubleshooting of both DHCPv4 and DHCPv6

DHCPv4 Operation Introducing DHCPv4

DHCPv4 uses three different address allocation methods

Manual Allocation - The administrator assigns a pre-allocated IPv4 address to the client, and DHCPv4 communicates only the IPv4 address to the device.

Automatic Allocation - DHCPv4 automatically assigns a static IPv4 address permanently to a device, selecting it from a pool of available addresses. No lease.

Dynamic Allocation - DHCPv4 dynamically assigns, or leases, an IPv4 address from a pool of addresses for a limited period of time chosen by the server, or until the client no longer needs the address. Most commonly used.

DHCPv4 Operation Introducing DHCPv4

10.1.1.2

DHCPv4 Operation DHCPv4 Message Format

DHCPv4 Message Format

8	16	24	32
OP Code (1)	Hardware type (1)	Hardware address length (1)	Hops (1)
Transaction Identifier			
Seconds - 2 bytes		Flags - 2 bytes	
Client IP Address (CIADDR) - 4 bytes			
Your IP Address (YIADDR) - 4 bytes			
Server IP Address (SIADDR) - 4 bytes			
Gateway IP Address (GIADDR) - 4 bytes			
Client Hardware Address (CHADDR) - 16 bytes			
Server name (SNAME) - 64 bytes			
Boot Filename - 128 bytes			
DHCP Options - variable			

DHCPv4 Operation DHCPv4 Discover and Offer Messages

Ethernet Frame	IP	UDP	DHCPDISCOVER
SRC MAC: MAC A DST MAC:FF:FF:FF:FF:FF:FF	IP SRC: 0.0.0.0 IP DST:255.255.255.255	UDP 67	CIADDR: 0.0.0.0 GIADDR: 0.0.0.0 Mask: 0.0.0.0 CHADDR: MAC A

MAC: Media Access Control Address CIADDR: Client IP Address GIADDR: Gateway IP Address CHADDR: Client Hardware Address

The DHCP client sends a directed IP broadcast with a DHCPDISCOVER packet. In this example, the DHCP server is on the same segment and will pick up this request. The server notes the GIADDR field is blank; therefore, the client is on the same segment. The server also notes the hardware address of the client in

Students do activity on 10.1.1.5

DHCPv4 Operation Configuring a DHCPv4 Server

- A Cisco router running Cisco IOS software can be configured to act as a DHCPv4 server. To set up DHCP
 - 1.Exclude addresses from the pool.
 - 2. Set up DHCP pool name

3. Configuring Specific Tasks –define range of addresses and subnet mask. Use default-router command for default gateway. Optional items that can be included in pool – dns server, domain-name

```
R1 (config) # ip dhcp excluded-address 192.168.10.1 192.168.10.9
R1 (config) # ip dhcp excluded-address 192.168.10.254
R1 (config) # ip dhcp pool LAN-POOL-1
R1 (dhcp-config) # network 192.168.10.0 255.255.255.0
R1 (dhcp-config) # default-router 192.168.10.1
R1 (dhcp-config) # dmain-name example.com
R1 (dhcp-config) # end
R1 (dhcp-config) # end
R1#
```

To disable dhcp - no service dhcp

DHCPv4 Operation Verifying a DHCPv4 Server

- Commands to verify DHCP show running-config | section dhcp show ip dhcp binding show ip dhcp server statistics
- On the PC –issue the ipconfig /all command

C:\WINDOWS\system32\cmd.exe	
WINS Proxy Enabled:	No
Ethernet Adapter Local Area Connec	tion
Connection-specific DNS Suffix .:	example.com
Description	SiS 900 PCI Fast Ethernet Adapter
Physical Address:	00-E0-18-5B-DD-35
Dhcp Enabled	Yes
Autoconfiguration Enabled:	Уев
IP Address:	192.168.10.10
Subnet Mask:	255.255.255.0
Default Gateway:	192.168.10.1
DHCP Server:	192.168.10.1
Lease Obtained:	Monday, May 27, 2013 1:06:22PM
Lease Expires:	Tuesday,May 28,2013 1:06:22PM
DNS Servers	192.168.11.5
C:\Documents and settings\SpanPC>	-

Do buttons on 10.1.2.2

DHCPv4 Operation DHCPv4 Relay

 Using an IP helper address enables a router to forward DHCPv4 broadcasts to the DHCPv4 server. Acting as a relay.

```
R1 (config) # interface g0/0
R1 (config-if) # ip helper-address 192.168.11.6
R1 (config-if) # end
R1# show ip interface g0/0
GigabitEthernet0/0 is up, line protocol is up
Internet address is 192.168.10.1/24
Broadcast address is 255.255.255.255
Address determined by setup command
MTU is 1500 bytes
Helper address is 192.168.11.6
<Output omitted>
```


Configuring a DHCPv4 client Configuring a Router as DHCPv4 client

SOHO(config)# interface g0/1 SOHO(config-if)# ip address dhcp SOHO(config-if)# no shutdown SOHO(config-if)# *Jan 31 17:31:11.507: %DHCP-6-ADDRESS_ASSIGN: Interface GigabitEthernet0/1 assigned DHCP address 209.165.201.12, mask 255.255.255.224, hostname SOHO SOHO(config-if)# end SOHO# show ip interface g0/1 GigabitEthernet0/1 is up, line protocol is up Internet address is 209.165.201.12/27 Broadcast address is 255.255.255.255 Address determined by DHCP <Output omitted>

Do buttons on 10.1.3.1

Student practice on button 2

Configuring a DHCPv4 client Configuring a SOHO Router as a DHCPv4 Client

 Home routers are typically configured to get its Global IP address via DHCP from the ISP

Connectivity	
View and change router settings	
Basic Internet Settings Local Network Advanced Routin	ng Administration
19vd 19v6	
Type of Internet Connection Edit	Optional
Connection Type: Automatic Configuration - DHCP	Domain name: hsd1.ca.comcast.net.
	MTU: Auto
	Size: 0
	MAC Address Clone Z Enabled
	C4 : 2C : 03 : 2A : B5 : A2
	Clone my PC's MAC
	Ok Cancel Apply

Troubleshoot DHCPv4 Troubleshooting Tasks

Troubleshooting Task 1:	Resolve conflicts.
Troubleshooting Task 2:	Verify physical connectivity.
Troubleshooting Task 3:	Test with a static IPv4 address.
Troubleshooting Task 4:	Verify switch port configuration.
Troubleshooting Task 5:	Test from the same subnet or VLAN.

Troubleshoot DHCPv4 Verify Router DHCPv4 Configuration

When the DHCPv4 server is located on a separate LAN from the client,

Verify:

- Step 1. Verify that the **ip helper-address** command is configured on the correct interface.
- Step 2: Verify no service dhcp

Verifying DHCPv4 Relay and DHCPv4 Services

Troubleshoot DHCPv4 Debugging DHCPv4

Verifying DHCPv4 Using Router debug Commands

```
R1(config) # access-list 100 permit udp any any eq 67
R1(config) # access-list 100 permit udp any any eq 68
R1(config) # end
R1# debug ip packet 100
IP packet debugging is on for access list 100
*IP: s=0.0.0.0 (GigabitEthernet0/1), d=255.255.255.255, len 333,
revd 2
*IP: s=0.0.0.0 (GigabitEthernet0/1), d=255.255.255.255, len 333,
stop process pak for forus packet.
*IP: s=192.168.11.1 (local), d=255.255.255.255
(GigabitEthernet0/1), len 328, sending broad/multicast
<Output omitted>
Router1# debug ip dhcp server events
DHCPD: returned 192.168.10.11 to address pool LAN-POOL-1
DHCPD: assigned IP address 192.168.10.12 to client
0100.0103.85e9.87.
DHCPD: checking for expired leases.
DHCPD: the lease for address 192.168.10.10 has expired.
DHCPD: returned 192.168.10.10 to address pool LAN-POOL-1
```

10.1.4.3

SLAAC and DHCPv6 Stateless Address Autoconfiguration (SLAAC)

SLAAC is a method in which a device can obtain an IPv6 global unicast address without the services of a DHCPv6 server.

ICMPv6 Stateless Address Autoconfiguration

SLAAC and DHCPv6 SLAAC Operation

Client Performs Duplicate Address Detection

Create IPv6 Global Unicast Address
 "After generating my own Interface ID I can use the prefix and

prefix length from the router to create my own IPv6 address."

IPv6 solicited-node multicast

4. Duplicate Address Detection "Are there any other devices on this network using this IPv6 address?."

Do buttons on 10.2.1.2

SLAAC and DHCPv6 SLAAC and DHCPv6

SLAAC and DHCPv6 SLAAC Option

SLAAC and DHCPv6 Stateless DHCP Option

SLAAC and DHCPv6 Stateful DHCP Option

SLAAC and DHCPv6 DHCPv6 Operations

SLAAC and DHCPv6 10.2.1.8 Activity - Identify the Steps in DHCPv6 Operation

.vity - Identify the Steps in DHCPv6 Operation Order the steps to illustrate a DHCPv6 lease origination. Drag each of the DHCPv6 lease origination steps to its appropriate field, based on the circled numbers in the graphic.	DHCPv6 Client
REQUEST REPLY ADVERTISE	Router Solicitation Router Advertisement Stateful DHCPv6 Operations
SOLICIT	5

Do activity on 10.2.1.8

Stateless DHCPv6

Configuring a Router as a Stateless DHCPv6 Server

R1(config) # ipv6 unicast-routing	
R1(config) # ipv6 dhcp pool IPV6-STATELESS	
R1(config-dhcpv6)# dns-server 2001:db8:cafe:aaaa::5	
R1(config-dhcpv6)# domain-name example.com	
R1(config-dhcpv6)# exit	
R1(config)# interface g0/1	
R1(config-if)# ipv6 address 2001:db8:cafe:1::1/64	
R1(config-if) # ipv6 dhcp server IPV6-STATELESS	
R1(config-if)# ipv6 nd other-config-flag	

Stateless DHCPv6

Configuring a Router as a Stateless DHCPv6 Client


```
R3(config)# interface g0/1
R3(config-if)# ipv6 enable
R3(config-if)# ipv6 address autoconfig
R3(config-if)#
```

Verify the Stateless DHCP Client using:

Show IPv6 interface

Debug ipv6 dhcp detail

Do buttons on 10.2.2.3

Stateful DHCPv6

Configuring a Router as a Stateful DHCPv6 Server

Do buttons on 10.2.3.1

Stateful DHCPv6

Configuring a Router as a Stateful DHCPv6 Client

R3(config)# interface g0/1 R3(config-if)# ipv6 enable R3(config-if)# ipv6 address dhcp R3(config-if)#

Verify Stateful DHCPv6 Server using:

show ipv6 dhcp pool

show ipv6 dhcp binding

Verify Stateful DHCPv6 client using:

show ipv6 interface

Stateful DHCPv6 Config a Router as a Stateful DHCPv6 Relay Agent

Do buttons on 10.2.3.4

Troubleshooting DHCPv6 Troubleshooting Tasks

Troubleshooting Task 1:	Resolve conflicts
Troubleshooting Task 1.	Marify all and an mathe
Troubleshooting Task 2:	verity allocation method.
Troubleshooting Task 3:	Test with a static IPv6 address.
Troubleshooting Task 4:	Verify switch port configuration.
Troubleshooting Task 5:	Test from the same subnet or VLAN.

Troubleshooting DHCPv6 Verify Router DHCPv6 Configuration

```
R1 (config) # ipv6 unicast-routing
R1 (config) # ipv6 dhcp pool IPV6-STATEFUL
R1 (config-dhcpv6) # address prefix 2001:DB8:CAFE:1::/64 lifetime
infinite infinite
R1 (config-dhcpv6) # dns-server 2001:db8:cafe:aaaa::5
R1 (config-dhcpv6) # domain-name example.com
R1 (config-dhcpv6) # exit
R1 (config) # interface g0/1
R1 (config-if) # ipv6 address 2001:db8:cafe:1::1/64
R1 (config-if) # ipv6 dhcp server IPV6-STATEFUL
R1 (config-if) # ipv6 nd managed-config-flag
```

Stateless DHCPv6 Services

```
R1 (config) # ipv6 unicast-routing

R1 (config) # ipv6 dhcp pool IPV6-STATELESS

R1 (config-dhcpv6) # dns-server 2001:db8:cafe:aaaa::5

R1 (config-dhcpv6) # domain-name example.com

R1 (config-dhcpv6) # exit

R1 (config) # interface g0/1

R1 (config-if) # ipv6 address 2001:db8:cafe:1::1/64

R1 (config-if) # ipv6 dhcp server IPV6-STATELESS

R1 (config-if) # ipv6 dhcp server IPV6-STATELESS

R1 (config-if) # ipv6 nd other-config-flag

D0 buttons on 10.2.4.2
```

10.2.4.2

Troubleshooting DHCPv6 Debugging DHCPv6

```
R1# debug ipv6 dhcp detail
   IPv6 DHCP debugging is on (detailed)
R1#
*Feb 3 21:27:41.123: IPv6 DHCP: Received SOLICIT from
FE80::32F7:DFF:FE25:2DE1 on GigabitEthernet0/1
*Feb 3 21:27:41.123: IPv6 DHCP: detailed packet contents
*Feb 3 21:27:41.123: src FE80::32F7:DFF:FE25:2DE1
(GigabitEthernet0/1)
*Feb 3 21:27:41.127: dst FF02::1:2
*Feb 3 21:27:41.127: type SOLICIT(1), xid 13190645
*Feb 3 21:27:41.127: option ELAPSED-TIME(8), len 2
*Feb 3 21:27:41.127:
                         elapsed-time 0
*Feb 3 21:27:41.127:
                       option CLIENTID(1), len 10
*Feb 3 21:27:41.127:
                         000
*Feb 3 21:27:41.127: IPv6 DHCP: Using interface pool IPV6-
STATEFUL
*Feb 3 21:27:41.127: IPv6 DHCP: Creating binding for
FE80:::32F7:DFF:FE25:2DE1 in pool IPV6-STATEFUL
<Output omitted>
```


Chapter 10: Summary

- All nodes on a network require a unique IP address to communicate with other devices.
- DHCPv4 includes three different address allocation methods:

Manual Allocation

Automatic Allocation

Dynamic Allocation

 There are two methods available for the dynamic configuration of IPv6 global unicast addresses.

Stateless Address Autoconfiguration (SLAAC)

Dynamic Host Configuration Protocol for IPv6 (Stateful DHCPv6)

Chapter 10: Summary (Continued)

The same tasks are involved when troubleshooting DHCPv4 and DHCPv6:

Resolve Address Conflicts

Verify Physical Connectivity

Test Connectivity using a Static IP Address

Verify Switch Port Configuration

Test Operation on the Same Subnet or VLAN

Cisco | Networking Academy[®] Mind Wide Open[™]

